A Portable MPI Implementation
of the SPAI Preconditioner in ISIS4++ *

Stephen T. Barnard ' Robert L. Clay *

Abstract

A parallel MPT implementation of the Sparse Approximate Inverse (SPAT) precon-
ditioner is described. SPAI has proven to be a highly effective preconditioner, and is
inherently parallel because it computes columns (or rows) of the preconditioning ma-
trix independently. However, there are several problems that must be addressed for an
efficient MPI implementation: load balance, latency hiding, and the need for one-sided
communication. The effectiveness, efficiency, and scaling behavior of our implementa-
tion will be shown for different platforms.

1 Introduction

The solution of large, sparse systems of linear equations on distributed-memory parallel
computers is an important problem in many scientific and engineering disciplines. Since
direct solution methods cannot be parallelized effectively, iterative methods such as
Conjugate Gradient, GMRES, Bi-CGSTAB, QMR, etc. are typically used [1]. Parallel
implementations of these solvers are not difficult to create, but an effective preconditioner
is usually required for them converge in a reasonable number of iterations, or even to
converge at all. Unfortunately, the widely used ILU-type preconditioners, which are
based on incomplete LU factorizations, are impossible (or at least highly problematical)
to parallelize. A factored sparse approximate inverse described by Benzi and Tuma
[2] produces a preconditioner that can be used in parallel, but the construction of the
preconditioner is sequential. On the other hand, the common preconditioners that can
be parallelized, such as Polynomial and Block Jacobi, do not seem to be very effective
for many important problems. The Sparse Approximate Inverse (SPAI) preconditioner,
recently described by Grote and Huckle [5, 6], is an interesting alternative because it is
both highly effective and inherently parallel. A theoretical basis for the effectiveness of
SPAI has been demonstrated in [5].

Gould and Scott [4] evaluated SPAI on a number of standard examples. Their conclusion
was that SPAI is significantly more expensive than ILU-type preconditioners on a single
processor, but that SPAI sometimes succeeds when ILU fails. It appears that SPAI
should be most useful on multiple processors, where its inherent parallelism would make
it reasonably efficient and where ILU would be impractical. However, there are several
difficult problems to confront in implementing an efficient, portable parallel implementation

*to appear in: Eighth STAM Conference for Parallel Processing for Scientific Computing, March 1997

TResearch Scientist, MRJ Technology Solutions, NASA Ames Research Center, Moffett Field, CA 94035
(barnard@nas.nasa.gov).

!Senior Member Technical Staff, Distributed Systems Research Dept., Sandia National Laboratory,
Livermore, CA 94550 (rlclay@ca.sandia.gov).

of SPAI. The main problems are “one-sided” communication, load balancing, and latency
hiding communication.

A parallel version of SPAI has been implemented in ISIS+4, an object-oriented
framework for the scalable solution of sparse linear systems of equations'. ISIS++
includes a collection of preconditioners and Krylov subspace solution methods, and is
designed for portability, scalability, robustness, and adaptivity through run-time component
interchangeability. While the ISIS++ framework is capable of addressing generalized
solution of sparse linear systems, the focus has been to develop methods suitable for large-
scale 3-D finite element modelling applications.

Section 2 presents a brief review of SPAI, closely following Grote and Huckle. In
Section 3 we describe the techniques we use to to implement an efficient and portable parallel
version of SPAI, which is the main topic of this paper. Section 4 presents performance and
scaling results.

2 SPAI

Given a system of linear equations
Ax=Db x,b e R"

we seek a solution x = A~'b. An iterative solver starts with an initial guess xg
and constructs a sequence {xXg,Xy,...,X,;} that is intended to converge to acceptable
approximation x,, to x such that ||r,,||/||b|| < tol, where r,, = b — Ax,,.
Convergence is accelerated by preconditioning, in which a matrix M is used as either
a right preconditioner,
AMy =b, x=My

or a left preconditioner

MAx = Mb.

One should choose M such that AM =~ I.

Grote and Huckle [5] describe SPAT as a right preconditioner, but as Gould and Scott
[4] point out the SPAI algorithm can also be used to construct a left preconditioner. The
choice is determined by the distribution of A: a column-wise distribution leads naturally
to a right preconditioner, while a row-wise distribution leads to a left preconditioner. Since
the sparse matrix-vector multiplication method in ISIS++ uses a row-wise distribution we
have chosen to construct a left preconditioner. To be consistent with [5], however, this
section describes SPAI as a right preconditioner.

The basic approach of SPAT is to construct a preconditioning matrix M that approxi-
mates A™! in the Frobenius norm:

(1) ain A0 1] = 3 gin Ay — e

where my is the kth column of M. The construction of M is decomposed into the n
independent problems of constructing the n columns of M. This is the source of the
parallelism of SPAI.

If the sparsity pattern of M is known then the solution of (1) is straightforward,
amounting to the solution of n independent least squares problems. Let 7 = {j | mx(j) #

'URL http://www.ca.sandia.gov/isis/isis++.html.

3

0} be the set of indices of the nonzero entries of the kth column of M. The set of indices
of rows in A that could possibly affect a product with column kis 7 = {i | A(¢,J) # 0}.
To solve (1) we construct the full submatrix? A = A(Z,J), which has |Z| rows and |J|
columns, and solve the problem
(2) min [| Arg — |2

my

where €, = ex(Z). This can be done, for example, with a QR decomposition as described
in [5].

The main difficulty in constructing an approximate sparse inverse is determining the
sparsity pattern of M. Grote and Huckle propose the following method. For each column
k of M start with some initial sparsity pattern [J, which would typically be diagonal:
J = {k}. Construct the full submatrix A and solve the least squares problem (2) to obtain
my. Let my(J) = my, with the residual

(3) r=A(.,J)m; — ey .

Assuming that ||r||; # 0, then my is not exactly the kth column of the true inverse, and
we must augment the sparsity structure J to obtain a better approximation, so we look at
how to reduce the magnitude of the nonzero components of the residual.

Let £ ={l|r(l)#0}. Let 7 = {j | A(L,j) # 0}\J. These are candidate indices to
add to J, but there may be very many of them, so it is necessary to somehow choose the
ones that most effectively reduce ||r||2. Grote and Huckle suggest as a heuristic solving a
one-dimensional minimization problem for each j € J:

(4) min [|r + p1; A2
which has the solution
(5) rTAej
i =

T 4e413

with the residual .
(r Aej)2
(6) pi =3 — =
! 2 Aeyli3

The procedure for choosing new indices to augment the sparsity structure J is as
follows:

1. Determine j,
2. Determine p; for all j € J,
3. Determine the mean of {p;},

4. Retain all indices in J corresponding to a value of p less than or equal to the mean,
up to to some maximum number of indices (typically 5).

The complete SPAI algorithm is shown in Figure 1. Note that the accuracy of the
sparse-inverse approximation is determined by the parameter e.

2Note that we store and operate on A as a dense matrix, although it may contain zero entries.

1 forall k€ {1,...,n} do // construct a column of M
2 J — {k} // initial sparsity pattern is diagonal
3 T {i| A(i,T) # 0}

4. Trnorm < OO

5. s«— 1

6 while (7p0rm > € and s < Spq.) do

7 s—s+1

8 A — full_matrix(A,Z,7)

9. solve for m in eq. (2)

10. r— A(.,J)m — e // residual

11. Trorm < ||I‘||2

12. if 7orm > € then // augment sparsity and try again
13. L—{l|x(l)#0}

14. T =4 AL,j) #0N\T

15. for all j € J do

16. p; < minimize(A,r,j) // using eq. (3)
17. end for all

18. T — best(j, r,{p;})

19. I—7 J{i| AG,T")# 0}

20. J—=JUJ

21. end if

22. end while

23. M, k)T

24. end for all

Fic. 1. The SPAI Algorithm.

3 Implementation

Although SPAT is an inherently parallel algorithm, there are several difficult issues to
confront in creating an efficient and portable implementation. Deshpande, et al. [3] describe
a parallel implementation of a variant of SPAI that relies on the matrix being “structurally
symmetric” and which exploits matrix partitioning to reduce interprocessor communication.
We also allow for partitioning, but our code implements exactly the algorithm described in

[5, 6].

3.1 One-Sided Communication

SPAT computes every row of M independently, but to do so it must access potentially
any row of A in a completely unpredictable way. A processor that computes a row of M
must therefore access rows of A that reside on other processors. This is straightforward
on a shared-memory architecture, but on a distributed-memory system with no support
for shared-memory programming it requires either expensive and nonscalable all-to-all
communication or so-called “one-sided” communication. We use MPI for maximum
portability, but MPI does not support one-sided communication directly. It does, however,
provide the functionality to implement one-sided communication in a specialized way.
The processors computing rows of M run entirely asynchronously, with no barriers until
M is completed. Whenever a processor needs access to data on another processor, or when

5

it needs to inform another processor of some condition, it sends a request to that processor
in the form of a short message. These requests are handled by a communications server
that uses the MPI _Iprobe function to detect the arrival of requests.

There are five types of requests, distinguished by their message tags in the communi-
cations server:

1. Another processor needs a row of A.

2. Another processor needs a row of M. This is part of the load balance mechanism
described below.

3. Another processor is storing a row of M. Again, this is part of the load balancing
mechanism.

4. A processor has finished constructing all the rows of M that it “owns” and is informing
the master processor that it has finished its local work (although it may still construct
rows owned by other processors until all processors have finished their local work).

5. The master processor informs all other processors that the construction of M has
been completed.

The communications server is called periodically by every processor, typically when
they are waiting for remote data or when they have finished a substantial amount of work,
such as computing a row of M.

3.2 Latency Hiding

Many distributed-memory computers have large latency in interprocessor communication.
The parallel SPAI code masks this latency as much as possible by using asynchronous
communication and overlapping work with communication. For example, when a processor
initiates a request for a row of A to another processor it uses the asynchronous MPI_Isend
function, then it repeatedly calls the communications server to service requests from other
processors until the data that it requested arrives.

One effective way that the parallel SPAI code hides latency is to avoid unnecessary
communication altogether by caching remote references. When a processor is working on
a row of M and needs to retrieve a row of A from another processor it puts that row in
a cache (implemented with a hash table). It is very likely that subsequent columns of
M will require the same row of A, which they will find in the cache without resorting to
unnecessary communication. The function that accesses rows of A works as follows:

1. If the row is local simply return it.

2. Otherwise, if it is in the cache return it.

3. Otherwise, initiate a request to the processor that owns it.

4. Service requests until the data arrives and the request queue is empty.

5. Put the row in the cache and return it.

BICGSTAB (n=1590, nnz=45090)

1

0.1
0.01
0.001

0.0001
Residual
le-05

Preconditioners

le-06 - SPAT — -
None
1e-07 Polynomial — 7
1le-08 -
le-09 & L ! ! ! ! ! =
0 100 200 300 400 500 600 700 800

Iteration

Fia. 2. Convergence of Bi-CGSTAB. The Convergence of Bi-CGSTAB applied to a small
FEM matrix is shown, using the SPAI preconditioner, no preconditioning, and a polynomial

preconditioner.

3.3 Load Balancing

It is very likely that some rows of M will require much more work than the average row,
which can lead to a serious load imbalance. Furthermore, it is impossible to predict
accurately how much work a row will require, and therefore it is impossible to allocate
work to processors ahead of time in a load-balanced distribution. We have implemented a
dynamic load balancing strategy to deal with this problem.

Every processor “owns” a number of rows of the matrices A and M, which are assigned
at the outset of the program. The indices of the “local” rows of M are maintained as a
queue and each processor constructs its local part of M by taking indices from the queue.
Suppose processor p reaches the end of the queue, having completed its local work. It sends
a message informing the master processor that it has finished its local work, but there may
be other processors which are not finished, so processor p polls the other processors, using
the communications server, asking whether they have any row indices of M remaining in
their queues. Suppose processor ¢ has such an index. It takes that index from the queue
and returns it to processor p, which then computes the row of M in exactly the same way as
it would compute a local row of M, and when it is finished it returns the row to processor
p to be stored in the proper place. When the master processor detects that all processors
have finished their local work it sends messages (which are handled by the communications
server) to the other processors informing them that M is complete.

4 Performance

We have found SPAI to be very efficient for the FEM problems we have investigated when
we consider the complete time-to-solution, including the time required for the solver. While
SPAT is much more costly than other parallel preconditioners, it is so much more effective in
improving convergence that it is well worth the cost. Figure 2 illustrates the convergence of

| # processors | T3D (sec) | SP2 (sec) |

1 619.45

2 355.83

4 217.51

8 86.24 121.16
16 49.75 64.51
32 30.44 35.76
64 22.39 23.12
128 13.38 12.87

TABLE 1

Time to Compute SPAI This table shows the time required to construct the SPAI preconditioner
(using € = .4) on various numbers of processors of the Cray T3D and the IBM SP2. The matrix A
is of order 49600 and has 3153942 nonzero coefficients.

SPAT Scaling
1000 ¢ | | | |

caching and partitioning —
caching and no partitioning - - - -
partitioning and no caching —
perfect scaling - - - -

100 ¢

Time (sec.)

10 ¢

n=49600, nnz=3153942

1 | | | | | |
1 2 4 8 16 32 64 128
Number of Processors (SP2)

Fic. 3. SPAI Scaling (SP2). The scaling of SPAT on the IBM SP2 is shown under three
conditions: caching remote references and partitioning the matrix A to minimize communication,

no caching of remote references, and no matrix partitioning.

Bi-CGSTAB on a small but otherwise typical FEM problem using SPAI. Extensive analysis
of the effectiveness of SPAI can be found in [4].

Table 1 shows the run time for constructing the SPAI preconditioner for a much larger
matrix on several different configurations of T3D and SP2 processors. Note that the T3D
required eight processors to hold this matrix.

Figure 3 shows how the scaling of SPAI on the SP2 is affected by the techniques of
caching remote references and partitioning described in Section 3. In this example both
caching and partitioning each increase the performance of 128 processors by about 50-60
percent.

8

5 Conclusions

The SPAI preconditioner has proven to be an effective tool for certain types of problems.
It is also efficent compared to the alternative parallel preconditioners when we consider
time-to-solution (including the solver time). Spending more effort to construct a very
effective SPAI preconditioner, thereby greatly accelerating the convergence of the solver,
is ultimately more efficient than using a very cheap but relatively ineffective parallel
preconditioner. This implementation is most appropriate for very large problems that use
unstructured meshes and are solved on distributed-memory parallel computers. In these
cases serial preconditioners such as ILU are not even feasible, either because the problems
cannot be fit into one processor’s memory or because the preconditioner would present a
serial bottleneck.

The one-sided communication method embodied in the communication server permits
random access to remote data with acceptable efficiency. The communication server also
permits the code to achieve nearly perfect load balance. It is possible that this technique
may prove very useful for a wide variety unstructured applications. One of the authors
(Barnard) is currently investigating using a variant of the communications server for a
particle-in-cell technique in a parallel molecular dynamics code.

References

[1] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst, TEMPLATES for the Solution of Linear Systems: Building
Blocks for Iterative Methods. STAM Publications, 1994.

[2] M. Benzi and M. Tuma, A sparse approzimate inverse precondilioner for nonsymmetric linear
systems, STAM J. Scientific. Computing, In press.

[3] V. Deshpande, M. J. Grote, P. Messmer, and W. Sawyer, Parallel implementation of a sparse
approzimate inverse preconditioner, Proceeding of Trregular 96 (Santa Barbara).

[4] N. 1. M. Gould and J. A. Scott, On approzimate-inverse preconditioners, RAL 95-026, Com-
puting and Information Systems Department, Atlas Centre, Rutherford Appleton Laboratory,
Oxfordshire, England, June 23, 1995.

[5] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approzimate inverses, SIAM
J. Scientific Computing, In press.

[6] M. J. Grote and T. Huckle, Effective parallel preconditioning with sparse approzimate inverses,
In Proc. STAM Conf. on Parallel Processing for Scientific Comp., San Francisco, pp. 466-471.
SIAM, 1995

